我们提出协调指导矢量字段,以与机器人团队同时完成两个任务:首先,多个机器人的指导和导航到可能嵌入2D或3D中的可能不同的路径或表面;其次,他们的运动协调在跟踪他们的规定路径或表面时。运动配位是由路径或表面上的机器人之间所需的参数位移定义的。通过控制对应于指导矢量场之间的路径或表面参数的虚拟坐标来实现这种所需的位移。由动力学系统理论和Lyapunov理论支撑的严格数学保证,用于从所有初始位置上有效的分布式运动协调和机器人在路径或表面上导航。作为实用机器人应用的一个例子,我们从所提出的具有驱动饱和度的Dubins-car样模型的指导向量场中得出了一种对照算法。我们提出的算法分布并可扩展到任意数量的机器人。此外,广泛的说明性模拟和固定翼飞机户外实验验证了我们算法的有效性和鲁棒性。
translated by 谷歌翻译
最近对反向传播的近似(BP)减轻了BP的许多计算效率低下和与生物学的不兼容性,但仍然存在重要的局限性。此外,近似值显着降低了基准的准确性,这表明完全不同的方法可能更富有成果。在这里,基于在软冠军全网络中Hebbian学习的最新理论基础上,我们介绍了多层softhebb,即一种训练深神经网络的算法,没有任何反馈,目标或错误信号。结果,它通过避免重量传输,非本地可塑性,层更新的时间锁定,迭代平衡以及(自我)监督或其他反馈信号来实现效率,这在其他方法中是必不可少的。与最先进的生物学知识学习相比,它提高的效率和生物兼容性不能取得准确性的折衷,而是改善了准确性。 MNIST,CIFAR-10,STL-10和IMAGENET上最多五个隐藏层和添加的线性分类器,分别达到99.4%,80.3%,76.2%和27.3%。总之,SOFTHEBB显示出与BP的截然不同的方法,即对几层的深度学习在大脑中可能是合理的,并提高了生物学上的机器学习的准确性。
translated by 谷歌翻译
用于图像分割的深卷卷卷神经网络不会明确学习标签结构,并且可能会在类似树状结构(例如气道或血管)分割的圆柱形结构中产生不正确的结构(例如,具有断开的圆柱形结构)的分割。在本文中,我们提出了一种新型的标签改进方法,以从初始分割中纠正此类错误,并隐含地包含有关标签结构的信息。该方法具有两个新颖的部分:1)生成合成结构误差的模型,以及2)产生合成分割(带有误差)的标签外观仿真网络,其外观与实际初始分段相似。使用这些合成分割和原始图像,对标签改进网络进行了训练,以纠正错误并改善初始分割。该方法对两个分割任务进行了验证:来自胸部计算机断层扫描(CT)扫描和大脑3D CT血管造影(CTA)图像的脑血管分割的气道分割。在这两种应用中,我们的方法都大大优于标准的3D U-NET和其他先前的改进方法。当使用其他未标记的数据进行模型培训时,改进甚至更大。在消融研究中,我们证明了所提出方法的不同组成部分的值。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
在本文中,我们提出了一种用于电池供电的自动空中机器人的在线规划制定方法。该方法包括同时计划覆盖路径和安排在板载计算任务。我们进一步得出了一种新颖的变量覆盖运动,可鲁棒性地限制和凭经验动机的能量模型。该模型包括基于自动计算能量建模工具的时间表的能源贡献。我们的实验表明,如何根据可用电池在线调整初始飞行计划,从而解决了不确定性。在电池意外情况下,由于不利的大气条件,我们的方法可能会在飞行中失败,并增加了整体可容忍度。
translated by 谷歌翻译
短期可塑性(STP)是一种将腐烂记忆存储在大脑皮质突触中的机制。在计算实践中,已经使用了STP,但主要是在尖峰神经元的细分市场中,尽管理论预测它是对某些动态任务的最佳解决方案。在这里,我们提出了一种新型的经常性神经单元,即STP神经元(STPN),它确实实现了惊人的功能。它的关键机制是,突触具有一个状态,通过与偶然性的自我连接在时间上传播。该公式使能够通过时间返回传播来训练可塑性,从而导致一种学习在短期内学习和忘记的形式。 STPN的表现优于所有测试的替代方案,即RNN,LSTMS,其他具有快速重量和可区分可塑性的型号。我们在监督和强化学习(RL)以及协会​​检索,迷宫探索,Atari视频游戏和Mujoco Robotics等任务中证实了这一点。此外,我们计算出,在神经形态或生物电路中,STPN最大程度地减少了模型的能量消耗,因为它会动态降低个体突触。基于这些,生物学STP可能是一种强大的进化吸引子,可最大程度地提高效率和计算能力。现在,STPN将这些神经形态的优势带入了广泛的机器学习实践。代码可从https://github.com/neuromorphiccomputing/stpn获得
translated by 谷歌翻译
检查裂缝是正确监视和维护建筑物的重要过程。但是,手动裂缝检查是耗时,不一致且危险的(例如,在高建筑物中)。由于开源AI技术的开发,可用的无人机(UAV)的增加以及智能手机摄像机的可用性,已经有可能自动化建筑物裂纹检查过程。这项研究介绍了使用最先进的分段算法来开发一种易于使用,免费和开源的自动化建筑物外部裂纹检查软件(ABECIS),用于建筑和设施经理定量和定性报告。使用在现实世界中的无人机和智能手机摄像机和受控实验室环境中收集的图像对Abecis进行了测试。从算法的原始输出来看,用于测试实验的工会上的中值相交​​是(1)0.686,用于使用商业无人机在受控的实验室环境中使用商业无人机在室内裂纹检测实验,(2)0.186,用于使用室内裂纹检测在施工现场检测的室内裂纹。智能手机和(3)0.958使用商业无人机在大学校园进行户外裂纹检测。当人类操作员选择性地消除误报时,这些IOU结果可以显着提高到0.8以上。通常,Abecis最适合室外无人机图像,将算法预测与人类验证/干预相结合提供非常准确的裂纹检测结果。该软件可公开可用,可以下载以供开箱即用:https://github.com/smart-nyuad/abecis
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
本文介绍了预测媒体难忘性的Mediaeval 2021,这是今年第4版的任务,因为短期和长期视频难忘性的预测仍然是一个具有挑战性的任务。在2021年,使用两个视频数据集:第一,TRECVID 2019视频到文本数据集的子集;其次,Memento10K数据集是为了提供探索交叉数据集泛化的机会。另外,介绍了基于脑电图(EEG)的预测导频子任务。在本文中,我们概述了任务的主要方面,并描述了参与者提交的数据集,评估指标和要求。
translated by 谷歌翻译